zero-order reaction - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

zero-order reaction - traduction vers russe

EQUATION THAT LINKS REACTION RATE WITH CONCENTRATIONS OF REACTANTS IN A CHEMICAL REACTION
Rate equation (chemistry); Rate law; First order reaction; Second order reaction; Rate Law; Zero-order reaction; Order(Chemistry); Reaction order; Reaction potential; Pseudo first order reaction; Differentiated rate law; Integrated rate law; Second order rate constant; First-order reaction; Order of Reaction; Zero order reaction; Broken order reaction; Second-order reaction; Zero order kinetics; First order kinetics; Rate of formation; First-order kinetics; Order of reaction; Order (chemistry); Zero order process (chemistry); Zero-order kinetics; Method of initial rates; Orders of reaction
  • Concentration of A (A<sub>0</sub> = 0.25 mol/L) and B versus time reaching equilibrium ''k''<sub>1</sub> = 2 min<sup>−1</sup> and ''k''<sub>−1</sub> = 1 min<sup>−1</sup>
  • Time course of two first order, competitive reactions with differing rate constants.

zero-order reaction         

общая лексика

реакция нулевого порядка

first-order reaction         

общая лексика

реакция первого порядка

reaction order         

общая лексика

порядок реакции

Définition

Антагонистические игры
(матем.)

понятие теории игр (см. Игр теория). А. и. - игры, в которых участвуют два игрока (обычно обозначаемые I и II) с противоположными интересами. Для А. и. характерно, что выигрыш одного игрока равен проигрышу другого и наоборот, поэтому совместные действия игроков, их переговоры и соглашения лишены смысла. Большинство азартных и спортивных игр с двумя участниками (командами) можно рассматривать как А. и. Принятие решений в условиях неопределённости, в том числе принятие статистических решений, также можно интерпретировать как А. и. Определяются А. и. заданием множеств стратегий игроков и выигрышей игрока I в каждой ситуации, состоящей в выборе игроками своих стратегий. Таким образом, формально А. и. есть тройка ‹А, В, Н›, в которой А и В - множества стратегий игроков, а Н (а, b) - вещественная функция (функция выигрыша) от пар (а, b), где а A, b В. Игрок I, выбирая а, стремится максимизировать Н(а, b), а игрок II, выбирая b, - минимизировать Н (а, b). А. и. с конечными множествами стратегий игроков называются матричными играми (См. Матричные игры).

Основой целесообразного поведения игроков в А. и. считается принцип Минимакса. Следуя ему, I гарантирует себе выигрыш

точно так же II может не дать I больше, чем

Если эти "минимаксы" равны, то их общее значение называется значением игры, а стратегии, на которых достигаются внешние экстремумы, - оптимальными стратегиями игроков. Если "минимаксы" различны, то игрокам следует применять смешанные стратегии, т. е. выбирать свои первоначальные ("чистые") стратегии случайным образом с определёнными вероятностями. В этом случае значение функции выигрыша становится случайной величиной, а её Математическое ожидание принимается за выигрыш игрока I (соответственно, за проигрыш II). В играх против природы оптимальную смешанную стратегию природы можно принимать как наименее благоприятное априорное распределение вероятностей её состояний. В А. и. игроки, используя свои оптимальные стратегии, ожидают получения (например, в среднем, если игра повторяется многократно) вполне определённых выигрышей. На этом основан рекуррентный подход к динамическим играм в тех случаях, когда они сводятся к последовательностям А. и., решения которых можно найти непосредственно (например, если эти А. и. являются матричными). А. и. составляют класс игр, в которых принципиальные основы поведения игроков достаточно ясны. Поэтому всякий анализ более общих игр при помощи А. и. полезен для теории. Пример такого анализа даёт классическая Кооперативная теория игр, изучающая общие бескоалиционные игры через системы А. и. каждой из коалиций игроков против коалиции, состоящей из всех остальных игроков.

Лит.: Бесконечные антагонистические игры, под ред. Н. Н. Воробьева, М., 1963.

Н. Н. Воробьев.

Wikipédia

Rate equation

In chemistry, the rate law or rate equation for a chemical reaction is a mathematical equation that links the rate of forward reaction with the concentrations or pressures of the reactants and constant parameters (normally rate coefficients and partial reaction orders). For many reactions, the initial rate is given by a power law such as

v 0 = k [ A ] x [ B ] y {\displaystyle v_{0}\;=\;k[\mathrm {A} ]^{x}[\mathrm {B} ]^{y}}

where [ A ] {\displaystyle [\mathrm {A} ]} and [ B ] {\displaystyle [\mathrm {B} ]} express the concentration of the species A {\displaystyle \mathrm {A} } and B , {\displaystyle \mathrm {B} ,} usually in moles per liter (molarity, M {\displaystyle M} ). The exponents x {\displaystyle x} and y {\displaystyle y} are the partial orders of reaction for A {\displaystyle \mathrm {A} } and B {\displaystyle \mathrm {B} } and the overall reaction order is the sum of the exponents. These are often positive integers, but they may also be zero, fractional, or negative. The order of reaction is a number which quantifies the degree to which the rate of a chemical reaction depends on concentrations of the reactants. In other words, the order of reaction is the exponent to which the concentration of a particular reactant is raised. The constant k {\displaystyle k} is the reaction rate constant or rate coefficient of the reaction. Its value may depend on conditions such as temperature, ionic strength, surface area of an adsorbent, or light irradiation. If the reaction goes to completion, the rate equation for the reaction rate v = k [ A ] x [ B ] y {\displaystyle v\;=\;k[{\ce {A}}]^{x}[{\ce {B}}]^{y}} applies throughout the course of the reaction.

Elementary (single-step) reactions and reaction steps have reaction orders equal to the stoichiometric coefficients for each reactant. The overall reaction order, i.e. the sum of stoichiometric coefficients of reactants, is always equal to the molecularity of the elementary reaction. However, complex (multi-step) reactions may or may not have reaction orders equal to their stoichiometric coefficients. This implies that the order and the rate equation of a given reaction cannot be reliably deduced from the stoichiometry and must be determined experimentally, since an unknown reaction mechanism could be either elementary or complex. When the experimental rate equation has been determined, it is often of use for deduction of the reaction mechanism.

The rate equation of a reaction with an assumed multi-step mechanism can often be derived theoretically using quasi-steady state assumptions from the underlying elementary reactions, and compared with the experimental rate equation as a test of the assumed mechanism. The equation may involve a fractional order, and may depend on the concentration of an intermediate species.

A reaction can also have an undefined reaction order with respect to a reactant if the rate is not simply proportional to some power of the concentration of that reactant; for example, one cannot talk about reaction order in the rate equation for a bimolecular reaction between adsorbed molecules:

v 0 = k K 1 K 2 C A C B ( 1 + K 1 C A + K 2 C B ) 2 . {\displaystyle v_{0}=k{\frac {K_{1}K_{2}C_{A}C_{B}}{(1+K_{1}C_{A}+K_{2}C_{B})^{2}}}.}
Traduction de &#39zero-order reaction&#39 en Russe